

http://www.hpe.com/software/insights

Bas Dijkstra

Service Virtualization
Implementation, Practices, and Trends

for On-Demand Test Environments

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97073-7

[LSI]

Service Virtualization
by Bas Dijkstra

Copyright © 2017 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and
Virginia Wilson
Production Editor: Colleen Lobner
Copyeditor: Octal Publishing, Inc.

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

October 2016: First Edition

Revision History for the First Edition
2016-10-12: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Service Virtualiza‐
tion, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Introduction and Reading Guide. vii

1. An Introduction to Service Virtualization. 1
What Is Service Virtualization? 1
Bottlenecks in the Software Development Life Cycle 3
How Does Service Virtualization Compare to Stubbing and

Mocking? 3

2. Service Virtualization Implementation. 5
Selecting a Service Virtualization Approach 5
Fitting Service Virtualization into Your Software

Development Life Cycle 7
Benefits of Applying Service Virtualization to Your Software

Development Life Cycle 8

3. Service Virtualization in a Bimodal IT World. 11
Reliability Mode and Service Virtualization 12
Agility Mode and Service Virtualization 13
Bridging the Gap 14

4. Service Virtualization and Continuous Delivery. 15
The Role of Service Virtualization in the CD Process 15
Containerizing Virtual Test Environments 17

5. The Role of Service Virtualization in Current IT Trends. 19
Agile Software Development 19
The Internet of Things 20

v

The API Economy 21
Lean Software Development 21
What Will the Future Hold? 22

A. Service Virtualization Case Studies. 25

vi | Table of Contents

Introduction and Reading Guide

Increasingly competitive and rapidly changing markets are forcing
organizations that rely on software either as their primary source of
revenue or as a critical supporter of their business processes to be
able to design, develop, and release high-quality software at speed.
Failing to deliver new releases quickly and efficiently, or delivering
software that contains too many defects, will have a negative effect
on your competitive edge and therefore on revenue.

Also, contrary to traditional monolithic software systems, modern
applications consist of an increasingly large number of independent,
interconnected components. This building-block approach to soft‐
ware design and development promotes reuse, maintainability, and
parallel development.

These two factors place high demands on the software development
life cycle and especially on the testing activities incorporated
therein. Development teams need to be able to continuously test and
release software, which in turn requires that test environments need
to be available and ready for testing at all times. Anyone involved in
software testing, however, can tell you that managing test environ‐
ments is no ordinary feat. Having all components and dependencies
in place, virtually on demand, takes a lot of time and effort, if it is
even feasible at all.

One approach that has seen a steady rise in popularity in recent
years is the introduction of service virtualization as a means for
development teams to regain control over the availability of suitable
test environments and, as a result, over their software development
life cycle as a whole.

vii

This book provides an overview of the current state and trends in
the field of service virtualization. We begin with an introduction of
the concept and an overview of the benefits that service virtualiza‐
tion brings to the software development life cycle. Then, we’ll take a
look at the role that service virtualization plays in bimodal IT and in
the introduction and execution of Continuous Delivery. The final
part of this book contains insights in the role that service virtualiza‐
tion plays in current IT trends, such as Agile software development,
the Internet of Things, and the API economy.

This book is intended for organizations and professionals involved
in the software development process that want to inform themselves
about service virtualization as a means of improving testing and
software delivery processes as well as about the current state of the
field and the way service virtualization can add value with regards to
upcoming IT trends.

Please be informed that any technical details with regard to tool-
and vendor-specific service virtualization implementation strategies
are beyond the scope of this book. For more details on these, refer to
the website of the corresponding tool or vendor. From personal
experience, these usually contain myriad technical information as
well as case studies describing implementation strategies in much
more detail.

viii | Introduction and Reading Guide

1 https://en.wikipedia.org/wiki/Service_virtualization

CHAPTER 1

An Introduction to
Service Virtualization

In this chapter, we learn what service virtualization is and how it
relates to stubbing and mocking, two other simulation techniques
that are used often by development teams to help them write and
execute tests effectively.

What Is Service Virtualization?
Service virtualization is a method to emulate the behavior of
specific components in heterogeneous component-based applica‐
tions such as API-driven applications, cloud-based applications and
service-oriented architectures. It is used to provide software devel‐
opment and testing teams access to dependent system components
that are needed to exercise an application under test, but are
unavailable or difficult to access for development and testing pur‐
poses.1

A lot of modern software, such as Application Programming Inter‐
face (API)–driven or Service-Oriented Architecture (SOA)–based
applications, consists of a number of interconnected components.
Software development teams that want to access these dependent
components (dependencies) during development and testing often
find that these dependencies are unavailable or difficult to access.

1

https://en.wikipedia.org/wiki/Service_virtualization

There are several reasons for this:

• The dependency has not yet been developed or is under devel‐
opment. This is often seen when several development teams
work in parallel on different components of a single system.

• The dependency does not contain appropriate test data. When
test environments need to be configured with complex test data
structures, often an (anonymized) copy or subset of production
data is loaded into the test environment, without the develop‐
ment team knowing the contents of this dataset.

• Access to the dependency requires an access fee. This is often
the case with Software as a Service (SaaS)–based third-party
dependencies.

• The dependency is otherwise unavailable, unreliable, or acting
in a nondeterministic manner. This is often the case with legacy
systems.

Service virtualization attempts to remove these test environment
constraints by simulating the behavior of unavailable or difficult-to-
access dependencies, as depicted in Figure 1-1. This is done by mod‐
eling and deploying a so-called “virtual asset” that emulates those
parts of the dependency’s behavior that are required to execute the
desired test cases. Service virtualization is different from (and com‐
plementary to) other types of virtualization by focusing purely on
behavior simulation rather than simulating entire systems.

Figure 1-1. Removing dependency access restrictions with service
virtualization

2 | Chapter 1: An Introduction to Service Virtualization

2 This market research was carried out in 2014 using 505 participants from a wide range
of organizations, market segments, geographies, and roles.

Bottlenecks in the Software Development
Life Cycle
In the previous section, we explored some of the reasons for the
introduction of service virtualization. At the heart of these reasons
are three main bottlenecks addressed by the 2015 voke Market
Snapshot on Service Virtualization:2

Work is delayed while waiting for dependencies
No less than 81 percent of the participants experienced develop‐
ment delays due to access restrictions with regards to environ‐
ment dependencies. For testing activities, the percentage is even
higher: 84 percent of the participants experienced delays in test‐
ing activities for the same reason.

Access to required dependencies is restricted
On average, participants said they required 52 dependencies
throughout the software development process (up to, but not
including deployment into the production environment). How‐
ever, only 23 of these dependencies can be accessed without
restrictions.

Challenges in accessing third-party dependencies
Seventy-nine percent of participants reported that they experi‐
enced restrictions accessing third-party dependencies. These
restrictions include access fees, time limits, and limited availa‐
bility of suitable test data.

How Does Service Virtualization Compare to
Stubbing and Mocking?
Development teams have been simulating dependencies required for
executing different types of tests (such as unit tests and integration
tests) for a long time. Two techniques that have been, and still are,
widely used are stubbing and mocking:

• Stubs are objects that replace a dependency by providing prede‐
fined responses to input delivered during tests. Stub behavior

Bottlenecks in the Software Development Life Cycle | 3

http://bit.ly/2da7Kda

therefore is predetermined and fixed, making stubs suitable for
state verification during test execution.

• Mocks are similar to stubs, with the difference being that the
behavior of mocks is defined during test initialization. This
means that two instances of the same mock can behave differ‐
ently, depending on their initialization, which makes them suit‐
able for behavior verification during test execution.

Table 1-1 summarizes the differences between these techniques and
service virtualization:

Table 1-1. A comparison between stubbing/mocking and service
virtualization

Stubbing and mocking Service virtualization
Used mostly to support unit and unit
integration testing

Used primarily to support system, acceptance, and
performance testing, although it can be used to support
unit and unit integration testing just as well

Created and used mostly by
developers

Can be created by any authorized individual and then
shared and used within the team or across teams

Used mostly within the confines of a
single team or project

Can be used at an individual team level, across teams
within the same project as well as throughout the
organization; for example, through a dedicated service
virtualization Center of Excellence

Does not scale well to support larger
projects and test scenarios

Scalable and reliable solution, able to support large projects
and test scenarios

No support (or need) for data-driven
stubbing or mocking

Supports creating flexible, data-driven virtual assets

No support (or need) for wide range
of message and transport protocols

Supports a wide range of message and transport protocols

From this comparison, you could conclude that service virtualiza‐
tion takes the support for testing that is provided by stubbing and
mocking to the enterprise level.

Now that we have seen what the concept of service virtualization
entails, in the next chapter, we’ll take a look at how we can make it
an integral part of the software development life cycle.

4 | Chapter 1: An Introduction to Service Virtualization

CHAPTER 2

Service Virtualization
Implementation

In this chapter, we take a look at some of the questions you should
ask yourself when considering integrating service virtualization into
your Continuous Delivery pipeline.

Selecting a Service Virtualization Approach
The first question that you should ask when considering service vir‐
tualization is whether it is necessary in the first place. Service virtu‐
alization implementation is not a quick fix, as you will see in the
next section. Although the ease of use and the speed of creation of
virtual assets is one of the drivers of service virtualization success, its
implementation requires proper planning and, depending on the
implementation scale, a significant investment of time and effort.
This applies especially to organization-wide service virtualization
projects. Of course, it is very well possible to begin the implementa‐
tion process on a small scale to test the waters.

One of the alternatives to service virtualization could be to develop,
deploy, use, and maintain your own set of stubs. Be sure to take into
consideration the additional costs associated with software mainte‐
nance. These costs, including corrective maintenance costs (costs
associated with fixing defects) and enhancements (costs associated
with continuing innovations), often exceed the initial development
and implementation costs significantly and you should not overlook
them.

5

After you establish that service virtualization is the way forward, it is
advised that you take some time to identify the bottlenecks in your
test environment that are most painful when it comes to delays in
development and testing progress. Here are some questions that
could be asked:

• Which dependencies are responsible for the delay that your
team is experiencing?

• What gains are to be won with service virtualization implemen‐
tation?

• Do these gains really solve the problem at hand?
• Are there any other quick wins that can either speed up the

development process or at least result in management buy-in
(preferably both!)?

After you have decided on what bottlenecks to attack first, it is time
to consider the various options and tools available on the market.
There are a lot of options available nowadays, and one of the most
important choices you need to make is between open source solu‐
tions (such as Hoverfly from SpectoLabs and WireMock, which is
developed and maintained by Tom Akehurst) and commercially
licensed service virtualization engines (such as HPE Service Virtual‐
ization and Parasoft Virtualize).

Table 2-1 presents some considerations that you need to take into
account when making this decision.

Table 2-1. Considerations related to the choice between open source and
commercial service virtualization solutions

Open source Commercial
No license fees License fees (often per “hit” = request/response exchange)
No vendor lock in Vendor lock in (no migration strategies from one commercial

vendor to another exist [yet])
Limited functionality Wide range of options with regard to message and transport

protocols, data-driven virtual assets, deployment, and
management options)

Limited support (often on a
best effort basis)

Professional support, on site as well as via email/telephone.

Limited scalability Highly scalable for use throughout the organization

6 | Chapter 2: Service Virtualization Implementation

1 Note that one of the success factors of service virtualization is the fact that virtual asset
development typically takes a fraction of the time it takes to develop the application
itself. As such, adequate planning of virtual asset development does not need to imply
planning as rigorously as is done with regular software development tasks.

Fitting Service Virtualization into Your
Software Development Life Cycle
After you have decided on the services that you want to virtualize
and the tool you’ll use to perform the task, it is time to begin the
development of your virtual assets. Similar to the creation of auto‐
mated test scripts, you should treat developing and implementing vir‐
tual assets as software development.

This entails the following:

• Development of virtual assets should be made a specific and
visible task in your overall software development process. In
case of Agile/Scrum software development, for example, you
should make virtual asset development and maintenance visible
as tasks on the Scrum board, assign an owner, and ensure that it
is accepted at the end of a sprint. We discuss this further in
Chapter 5.

• You should adequately plan for tasks related to the develop‐
ment, implementation, and maintenance of virtual assets, both
in time and with an eye on what resources are needed.1

• You should treat virtual assets like any other software artifact
delivered by a development team. This includes bringing those
assets under version control and testing them to validate that
they meet expectations.

Taking care of these tasks facilitates the successful embedding of ser‐
vice virtualization into the software development process and ulti‐
mately, in the organization as a whole.

It must be noted, though, that a successful service virtualization can‐
not exist without a high-quality set of tests that exercise the applica‐
tion under test, and, by reference, the virtual assets. This set of tests
should not only require basic or default virtual asset behavior, but
also cover any edge cases that have been modeled in the virtual asset.
If the test set fails to do this, and the virtual asset exerts only

Fitting Service Virtualization into Your Software Development Life Cycle | 7

straightforward and simple behavior, the added value of service vir‐
tualization is reduced significantly.

Benefits of Applying Service Virtualization to
Your Software Development Life Cycle
The use of service virtualization to simulate the behavior of critical
yet hard-to-access application components and dependencies in
your software development life cycle has a number of significant
benefits:

• It allows for earlier testing.
• It allows for continuous testing.
• It enables development teams to increase their test coverage.

In the following sections, we’ll take a closer look at each of these
benefits. Note that there are other benefits as well, but we will not be
covering those in this chapter. Here are some examples of these
additional benefits:

• The ability to closely replicate dependency performance charac‐
teristics for performance testing purposes

• The ability to replicate and fix defects faster
• The ability to prepare functional testing scenarios earlier and

execute them faster

Earlier Testing (“Shift Left”)
When you have virtual assets that simulate dependency behavior at
your disposal at the beginning of your software development activi‐
ties, no more time is wasted waiting until every dependency is in
place before you can begin integration and end-to-end testing. The
ability to test earlier means that potential defects are uncovered ear‐
lier in the development process, when they are relatively easy, fast,
and less expensive to fix.

The ability to test earlier in the software development life cycle is
commonly known as the shift left of testing. Figure 2-1 illustrates
this concept.

8 | Chapter 2: Service Virtualization Implementation

Figure 2-1. Shift left: test earlier in the process to speed up development
and find and fix defects faster

Continuous Testing
When the IT landscape of your organization is one with a lot of
applications running on many different platforms, setting up and
maintaining test environments requires a significant amount of time
and effort. Chapter 1 demonstrated how service virtualization is—or
at least can be—a suitable approach to simplify test environment
management and make it more flexible.

With the burden of provisioning and configuring (possibly many)
test environments out of the way, and with no more need to popu‐
late and repopulate these test environments with the appropriate test
data before every test run, you can run tests against the exact same
dependency in the exact same state over and over again.

An immediate benefit is that this improves the stability of a software
system and enhances the trust stakeholders place in it. It’s one thing
to see that a specific test or test set passes once; it’s another thing
altogether to know that that system passed the same set of tests
many times.

Another advantage is, in case a defect does occur, being able to
recreate the state of the test environment with a single click of a but‐
ton makes reproduction and root cause analysis of the defect much
easier.

The ability to run tests over and over again, on demand, is also
known as continuous testing.

Benefits of Applying Service Virtualization to Your Software Development Life Cycle | 9

Increase in Test Coverage
With full control over the behavior exerted by dependencies, soft‐
ware development teams can set up and execute specific test scenar‐
ios with far more ease compared to having to deal with “real”
dependencies. For example, service virtualization makes it easier to
perform the following:

Negative test scenarios
Not only do you want to ensure that your system handles the
“happy flow” scenarios correctly, knowing that it can handle
incorrectly formatted messages, message timeouts and other
exceptions is of vital importance, as well. These scenarios are
notoriously difficult to simulate in real test environments, but
with service virtualization, it’s just another scenario that you can
model in your virtual asset.

Edge case scenarios
To ensure that your system can handle all input values that are
within range, you will need to cover all edge cases, as well
(because those are often the scenarios that cause trouble in a
system). Finding or creating suitable edge cases in a real envi‐
ronment can be a laborious task, but with full control over the
test dataset contained within a virtual asset, simulating edge
case behavior isn’t any different from simulating common,
middle-of-the-road cases.

Other hard to set up scenarios
An example of this scenario type is the case in which the system
you are testing expects messages to arrive in a specific order. For
this scenario, you do want to verify the error handling capabili‐
ties in case those messages do not arrive in the prescribed order.
Again, this is much easier to accomplish when you have full
control over the behavior exerted by your virtual asset.

In this chapter, we covered how you can make service virtualization
an integral part of the software development life cycle and what ben‐
efits you can gain by doing so. In the next chapter, we’ll take a closer
look at these benefits in light of the bimodal IT practice model.

10 | Chapter 2: Service Virtualization Implementation

CHAPTER 3

Service Virtualization
in a Bimodal IT World

In 2014, Gartner published a new practice model for organizations
that deliver software: bimodal IT. In short, an organization that fol‐
lows the bimodal IT practice adopts two separate styles (modes) of
software development and delivery:

• Mode 1—also known as reliability mode—is focused on predict‐
ability. This involves development projects that are related to
core system maintenance, stability, and efficiency. These
projects generally require little business involvement and are
often organized in a traditional, sequential manner.

• Mode 2—or agility mode—focuses on innovation and differen‐
tiation. This involves finding solutions for new problems and
exploration of areas of uncertainty. These projects generally
require a high level of business involvement and are often
organized in an incremental, short-cycled, Agile method of
working.

Figure 3-1 shows an overview of what bimodal IT entails.

Mode 1 is mostly targeting systems of record—systems that store
information, often both current and historical, and that are used to
keep the daily business running. Mode 2, on the other hand, is
mainly focusing on systems of innovation—systems that are meant
to provide an organization with an edge over their competition.

11

Figure 3-1. A bimodal IT approach

In this chapter, we take a look at the role service virtualization can
play in software development projects in either mode, and how
organizations can benefit from an enterprise-level service virtualiza‐
tion approach spanning both modes.

Reliability Mode and Service Virtualization
Even though a growing number of software development projects
are organized in a short-cycled and incremental manner in order to
be able to react to the market’s demand for speed, projects that fol‐
low the traditional (“waterfall”) approach still exist and will proba‐
bly exist for some time to come. For these projects, too, service
virtualization has a number of potentially very valuable advantages.

Reliability mode projects often involve maintenance, upgrading or
phasing out of large, monolithic systems, such as mainframes or
Enterprise Resource Planning (ERP) systems. Creating and provi‐
sioning test environments for such systems can be a very time-
consuming and expensive process. Modern service virtualization
systems that offer the ability to simulate the behavior of such sys‐
tems can bring about significant cuts in expenses for test environ‐
ment setup and maintenance.

Also, after virtual assets that simulate a mainframe or ERP system
have been created, development teams do not need to claim time
from the scarce resources that possess detailed knowledge of these
systems anymore (or at least not as often). Any person who has
knowledge of how the service virtualization solution is set up can
add or adapt behavior (or test data) required for specific test cases.

12 | Chapter 3: Service Virtualization in a Bimodal IT World

This removes another potential bottleneck from the development
and testing process.

Another aspect of service virtualization that is especially beneficial
to reliability mode projects is the ability to simulate performance
characteristics of dependencies. Take for example the situation in
which an organization wants to periodically monitor end-to-end
performance in a production-like environment to ensure that
changes to specific systems do not have a negative impact on overall
performance. If these end-to-end tests involve applications or sys‐
tems that are expensive to replicate in a test environment (such as
the aforementioned mainframe or ERP systems), having a virtual‐
ized replica of these systems, in terms of both functionality and per‐
formance, in place can make end-to-end performance monitoring
much easier, or even possible at all.

Agility Mode and Service Virtualization
Whereas the benefits of service virtualization in reliability mode
focus on cost savings and the virtualization of complex and difficult-
to-duplicate systems, the benefits for development projects in agility
mode are centered around enabling and improving speed of deliv‐
ery.

When multiple development teams are working on separate parts of
an application that must interact with one another eventually, wait‐
ing until all of the development teams have finished developing
before integration testing can take place is a time-consuming pro‐
cess. This loss of time grows linearly with every rework iteration
required in case defects are found. With service virtualization,
development teams can expose the behavior of the artifacts they are
developing before the actual component is finished. This enables
other teams to test their own work against the component simula‐
tion faster, thereby greatly increasing the speed with which they can
find defects and subsequently resolve them.

With service virtualization, the impediment of having to share test
environments with other teams can be made a thing of the past, as
well. Especially when service virtualization is combined with con‐
tainerization techniques as described in Chapter 4, provisioning
multiple instances of the same virtual asset is a matter of minutes. In
this way, all teams can create and use their own test environments,

Agility Mode and Service Virtualization | 13

tailored to their specific needs, without running the risk of test envi‐
ronment or test data interference.

Finally, because service virtualization allows for quick provisioning
of test environment instances, it is an enabler for continuous testing,
which is another requirement for development teams wanting to
speed up and increase the agility of their software delivery pro‐
cess. For more information, see Chapter 2.

Bridging the Gap
As described in the previous sections, service virtualization provides
significant benefits to software development projects in either mode
of the bimodal IT practice. This does not imply, however, that there
is no need for an integrated service virtualization approach that
spans development projects in either mode. Having organization-
wide guidelines and best practices, such as virtual asset design
standards, with regard to service virtualization in use provides max‐
imum efficiency. Here are a couple of ways it can do this:

• Virtual assets can be shared and reused across development
teams and projects, with each team having the opportunity to
load its own datasets and performance characteristics.

• The number of service virtualization engine licenses required to
serve all development teams with the virtual assets they need (in
case of a commercial service virtualization solution) is mini‐
mized.

Another software development and delivery practice that is seeing a
lot of followers is Continuous Delivery. In the next chapter, we
demonstrate how service virtualization and Continuous Delivery go
hand in hand when organizations want to deliver quality software at
the speed demanded by increasingly competitive markets.

14 | Chapter 3: Service Virtualization in a Bimodal IT World

CHAPTER 4

Service Virtualization and
Continuous Delivery

This chapter provides an overview of the role that service virtualiza‐
tion can play in an organization that uses Continuous Delivery (CD)
to maximize their speed of application development and release.
We’ll take a look at how both concepts fit together, and what addi‐
tional benefits are gained from containerizing your virtualized test
environments.

The Role of Service Virtualization in the CD
Process
Organizations that are embracing CD as a means of bringing soft‐
ware to production in a fast and flexible manner can’t do without
the ability to test their applications in a continuous and automated
manner. This implies that suitable (with regard to configuration and
test data, for example) test environments should be available on
demand, something that is proving to be very difficult to do without
service virtualization.

Although development teams usually can get by with dependency
mocking in the early stages—most notably when writing and exe‐
cuting unit tests—it is becoming increasingly difficult to manage
real test environments in the later stages (for integration and end-to-
end testing) in such a way that continuous testing can be facilitated.
Two of the most important problems related to this are synchroniza‐

15

tion of test data across dependencies and lack of availability of all
dependencies required at the same time.

Building and using simple stubs might work when the technology
and behavior to be simulated is relatively straightforward. But
modern heterogeneous environments and composite applications
comprising a lot of different types of components and dependencies
(web services, databases, mainframes, ERP systems, SaaS solu‐
tions) require a more sophisticated, enterprise-level solution. This is
exactly where service virtualization comes into play.

We need to give you one warning, though: even though service vir‐
tualization has potentially many benefits to your development and
testing activities, you shouldn’t rely solely on it and forget about “the
real world.” There are some very good reasons for methodically test‐
ing against real dependencies:

• While setting up virtual assets, you might choose not to model
certain dependency characteristics for the purpose of speed or
flexibility. This applies especially to nonfunctional aspects such
as security and performance. To be sure that your system under
test is able to cope with these aspects, as well, test it against real
dependencies.

• Over time, your virtual asset definition might become out of
sync with the dependency being simulated. Although it’s no
substitute for proper communication and version control, test‐
ing against the real dependency every now and then is a good
way of detecting these changes.

A typical CD process takes care of the above by having code tested
against an increasing number of real implementations as the code
progresses through the pipeline. In the early stages, tests are run
mainly against simulations as a way to balance cost of dependency
management and speed. Here, the majority of defects will be, or at
least should be, caught. As the code moves closer toward the pro‐
duction environment, virtual assets are traded for real dependencies,
as depicted in Figure 4-1.

16 | Chapter 4: Service Virtualization and Continuous Delivery

Figure 4-1. Trading virtual assets for actual dependencies as code
moves through the Continuous Delivery pipeline

Containerizing Virtual Test Environments
Using service virtualization as an enabler for CD brings many bene‐
fits of its own. However, when we treat the virtual environments as
artifacts in that CD process, just like the system under test itself, and
combine this approach with the power of cloud computing, we
really take service virtualization to the next level.

A sample CD cycle, powered by containerized service virtualization,
could follow a path that looks as follows:

1. A developer commits his code changes to a version control sys‐
tem such as Git or Subversion.

2. The build server, for example Jenkins or Atlassian Bamboo, trig‐
gers a new build and run unit tests to ensure code quality on the
unit level.

3. After unit tests pass, the system under test is deployed on a test
environment that is created dynamically on a public or private
cloud server.
Simultaneously, a virtual test environment is created and provi‐
sioned on its own public or private cloud server. Test environ‐
ment configuration is set so that the desired behavior, test data
sets and performance characteristics (for example) are enabled.

Containerizing Virtual Test Environments | 17

4. Tests (system, integration, or end-to-end) are run against the
system under test, which in turn communicates with the virtual
assets in the simulated test environment.

5. After these tests pass, the system under test is deployed safely
into a production environment. Meanwhile, the cloud test envi‐
ronments are deprovisioned and removed, ready to be re-
created in the next cycle.

Figure 4-2 offers a graphic representation of this process.

Figure 4-2. Containerized service virtualization as an enabler for CD

In this chapter, we looked at how you can combine CD and service
virtualization to deliver quality software at the speed that today’s
competitive markets demand. The next chapter discusses the role
service virtualization plays in and the associated benefits for a num‐
ber of other IT trends.

18 | Chapter 4: Service Virtualization and Continuous Delivery

CHAPTER 5

The Role of Service Virtualization
in Current IT Trends

In this final chapter, we take a look at how service virtualization
plays (or can play) a role in some of the major IT trends from recent
years, such as Agile and lean software development and the Internet
of Things. We’ll explore realistic scenarios in which service virtuali‐
zation has a positive impact on software development and testing
efforts within each of these trends.

Agile Software Development
The practice of Agile software development, especially its popular
Scrum variant, involves cross-functional teams that incrementally
deliver working software every couple of weeks. In each iteration, or
sprint, software is developed, tested, and presented to the stakehold‐
ers, which might lead to adjustment of the goals for the next
sprint(s) or even for the remainder of the development trajectory.

Being able to deliver working software iteratively requires of the
development team that it be able to rapidly and continuously assess
the quality of the product, often through means of automated test‐
ing. This is impossible without having the required dependencies
and test environments in place and correctly configured throughout
each sprint.

If the team must wait until the end of every sprint to perform the
necessary testing because dependencies have not been delivered on

19

time or test environments are otherwise unavailable, the risk of
sprint goals not being met and the project degrading to “iterative
waterfall” increase significantly.

With appropriate service virtualization in place, however, Agile
development teams are able to begin testing as soon as the first
deliverable becomes available, and they can continue monitoring
quality throughout the sprint. This greatly increases the odds of
delivering quality software providing the desired business value at
the end of each iteration.

The Internet of Things
The Internet of Things (IoT) is the network of devices, vehicles,
buildings, and other objects featuring network connectivity, which
makes it possible for them to communicate with one another in
order to collect and exchange data.

You can consider these network-enabled objects as a specific form of
dependency when developing and testing software that communi‐
cates with these devices. For example, when you’re build a smart‐
phone app with which users can view the inventory in your IoT-
enabled fridge, that fridge is a dependency in your test environment
just like any other dependency we have seen.

Here are two IoT-specific challenges when it comes to test environ‐
ment management and the way service virtualization can provide a
solution:

• The cost of setting up and maintaining a physical test environ‐
ment can become a serious burden when your software com‐
municates with a large number of IoT-enabled devices (such as
different types of cars). Creating a virtual asset that simulates
the behavior exerted by these devices can quickly become a very
cost-effective alternative.

• A challenge specific to testing in the IoT is the ability to test
under different performance and network characteristics (for
example, with high latency or poor network reception). It can
be difficult to simulate these characteristics in a test lab with real
devices. Implementing a service virtualization solution that can
be configured to simulate different types of performance and
network characteristics gives teams the ability to test their soft‐

20 | Chapter 5: The Role of Service Virtualization in Current IT Trends

1 The principal book on lean software development is Lean Software Development: An
Agile Toolkit, by Mary Poppendieck and Tom Poppendieck, ISBN 978-0-321-15078-3.

ware under all types of circumstances instead of under only the
specific conditions in their test lab.

The API Economy
The term API economy refers to the trend of organizations exposing
(part of) the business logic in their software through APIs with
which the outside world can interact. For many of the world’s largest
software organizations, such as Google, Amazon, and Facebook,
exposing their data and business logic through APIs has become a
proven strategy for revenue increase.

For software development teams looking to build applications that
connect to and communicate through these APIs, service virtualiza‐
tion can be a useful strategy to mitigate some of the risks associated
with tests incorporating components outside of their circle of con‐
trol:

• Setting up the required test data for specific test cases can be a
laborious task (if it’s possible at all) when dealing with external
APIs. By creating virtual assets that simulate the behavior of
these APIs, control is regained and test coverage and test cycle
speed can be increased.

• Even though a large part of the APIs available are free to use—at
least to some extent—organizations might charge access fees for
specific APIs or only provide a fixed number of requests/
responses for free. This is where the “economy” part of the “API
economy” comes into play. If continuous (performance) testing
is part of your overall testing strategy, these access fees can
become a serious expense. In that case, service virtualization
can be a flexible and cost-saving alternative.

Lean Software Development
The practice of lean software development1 focuses on the elimina‐
tion of waste in software development, where ‘waste’ is defined as

The API Economy | 21

work that does not value to a product or service. Lean software
development is summarized by seven principles:

• Eliminate waste
• Amplify learning
• Decide as late as possible
• Deliver as fast as possible
• Empower the team
• Build integrity in
• See the whole

Service virtualization can be a significant contributor to most of
these principles, and therefore to the concept of lean software devel‐
opment as a whole. For example:

Eliminate waste
A prime example of waste in software development is waiting
time. By replacing dependencies that are not yet developed or
that software development teams need to schedule access time
for with virtual assets that are readily available, waiting time is
eliminated.

Amplify learning
In lean software development, learning is amplified by the use
of short development and testing cycles that allow development
teams to quickly implement and evaluate possible solutions to
the problem of software design. This relates to the concepts of
continuous testing and shift left, as introduced in Chapter 2.

Deliver as fast as possible
To ensure that software that is delivered fast does still meet the
predefined quality threshold, the ability to test early and test
often is indispensable to software development teams. Again,
refer to Chapter 2 for more information on how service virtuali‐
zation is an enabler for this so-called “quality at speed.”

What Will the Future Hold?
From this chapter and the previous chapters, we can conclude that
service virtualization is a technique that provides significant benefits
in terms of time, effort, and money saved to software development
processes of all kinds.

22 | Chapter 5: The Role of Service Virtualization in Current IT Trends

As of this writing (2016), the service virtualization market is still
maturing, with commercial service virtualization solutions (such as
HPE Service Virtualization and Parasoft Virtualize) becoming ever
more powerful and rich in features. We’re also witnessing a growth
in open source solutions (such as Hoverfly and WireMock), often
geared toward a specific aspect or type of service virtualization.

Of course, the future cannot be predicted with any kind of certainty,
but when we take the above into account, while also looking at IT
market predictions from established researchers such as Gartner
and Forrester, it is inevitable that service virtualization will remain a
practice to watch and explore for the years to come.

What Will the Future Hold? | 23

APPENDIX A

Service Virtualization Case Studies

This appendix contains a number of case studies that illustrate the
benefits that service virtualization brings to the software develop‐
ment life cycle.

Retail
A global, multichannel retailer turned to service virtualization to
speed up its time to market by shifting-left its testing efforts. For this
organization, faster time to market implied rapid development, test‐
ing, and deployment of applications serving both its internal (such
as the HR department) and external customers (served through the
website and stores).

The organization applied service virtualization to improve its testing
quality and its Continuous Delivery and integration capabilities.
Critical yet hard-to-access third-party systems have been replaced
by virtual assets, which enabled the organization to test faster, more
often, and earlier in the software development life cycle. This in turn
led to a transition from a traditional waterfall to an Agile/DevOps
development approach.

Removing the dependency on third-party application by means of
service virtualization also helps this organization improve its perfor‐
mance testing efforts by enabling development teams to execute
performance tests earlier and more often than was previously possi‐
ble.

25

Finance
A top-four bank was looking for a solution that allowed it to adapt
to increasingly fast-paced and complex application development
cycles without compromising application quality. Initially, it was
building simulators to replace third-party services required for end-
to-end and performance testing as well as external mainframes that
had limited availability (they could be accessed only during specific
time slots). Building these simulators took on average around 50
hours, effectively extending the bank’s testing cycle by two weeks.

By replacing the ad hoc simulation development with service virtu‐
alization on an enterprise-wide scale, the time needed to create a
simulator has been reduced to a mere four hours. Also, performance
test cycle duration has been reduced by on average two weeks,
allowing the test team to be more flexible and better support Agile
development.

Advertising
A global-operating marketing and advertisement company needed
to update their web services and applications weekly; in the past, the
company did this only three or four times a year. However, testing
efforts proved to be time consuming, costly, and complex due to the
number and variety of devices that the services and applications
needed to support.

By implementing service virtualization to replace the wide range of
devices and configurations required for adequate testing with man‐
ageable and configurable virtual assets, the company was able to
take back control over its testing efforts. It also enabled the company
not only to simulate normal device behavior, but to test the func‐
tionality of its services when facing performance issues, as well.

Additionally, the time needed to set up and provision a testing envi‐
ronment has been reduced from two weeks to two days, with signifi‐
cant cost reduction (in the range of several hundreds of thousands
of dollars) as an added bonus.

26 | Appendix A: Service Virtualization Case Studies

Further Reading
Service Virtualization for Dummies by Marcia Kaufman and Judith
Hurwitz, John Wiley & Sons, Inc., 2013. ISBN 978-1-118-50127-6

Service Virtualization: Reality is Overrated by John Michelsen
and Jason English, Apress, 2012. ISBN 978-1-430-24671-8

Service Virtualization Case Studies | 27

About the Author
Bas Dijkstra is a test automation and service virtualization consul‐
tant with more than 10 years of experience helping his clients bring
their software testing efforts to the next level via smart application
of tools. He has successfully designed and implemented test automa‐
tion and service virtualization solutions for clients in a multitude of
sectors. Bas is also an experienced teacher, writer, and speaker on
several topics related to test automation and service virtualization.
He lives in the Netherlands with his wife and two sons.

	Cover
	Hewlett Packard Enterprise
	Copyright
	Table of Contents
	Introduction and Reading Guide
	Chapter 1. An Introduction to Service Virtualization
	What Is Service Virtualization?
	Bottlenecks in the Software Development Life Cycle
	How Does Service Virtualization Compare to Stubbing and Mocking?

	Chapter 2. Service Virtualization Implementation
	Selecting a Service Virtualization Approach
	Fitting Service Virtualization into Your Software Development Life Cycle
	Benefits of Applying Service Virtualization to Your Software Development Life Cycle
	Earlier Testing (“Shift Left”)
	Continuous Testing
	Increase in Test Coverage

	Chapter 3. Service Virtualization in a Bimodal IT World
	Reliability Mode and Service Virtualization
	Agility Mode and Service Virtualization
	Bridging the Gap

	Chapter 4. Service Virtualization and Continuous Delivery
	The Role of Service Virtualization in the CD Process
	Containerizing Virtual Test Environments

	Chapter 5. The Role of Service Virtualization in Current IT Trends
	Agile Software Development
	The Internet of Things
	The API Economy
	Lean Software Development
	What Will the Future Hold?

	Appendix A. Service Virtualization Case Studies
	Retail
	Finance
	Advertising
	Further Reading

	About the Author

