Do you really need that Cucumber with your Selenium?

Note: this blog post is NOT meant to discredit the value of Cucumber, SpecFlow and similar tools. Quite the contrary. I think these are fantastic tools, created and maintained by great people.

Somewhere last week I watched the recording of ‘Is Cucumber Automation Killing Your Project?‘, a SauceLabs webinar presented by Nikolay Advolodkin. In this webinar, Nikolay showed some interesting figures: 68% of the participants indicated that they don’t collaborate with others to create business specs in three amigos sessions. However, 54% of the participants said they used Cucumber.

That means that there’s a significant amount of participants that do use Cucumber without actively collaborating on the creation of specifications through practices like three amigos sessions, Specification by Example and Example Mapping. That’s not the strong point of a tool like Cucumber, though. These tools really shine when they’re used to support collaboration, as discussed in this blog post from Aslak Helles√ły, creator of and core contributor to the Cucumber project.

I must say that the above statistics don’t surprise me. Many clients that I work with use Cucumber (or SpecFlow) in the same way, including my current one. Their reasoning?

“We want everybody in our team to understand what we’re testing with our tests”

And for a long time, I supported this. I, too, thought that using Cucumber on top of your test automation code could be a good idea, even if you’re not practicing Behaviour Driven Development. I’ve even written an article on the Cucumber.io blog that says something to that extent. Yes, I’ve put in some pitfalls to avoid and things to consider, but I don’t think that blog post covers my current point of view well enough.

That’s where this blog post comes in. I’ve come to think that in a lot of projects where Cucumber is used solely as another layer in the automation stack, it does more harm than good. The only people that really read the Given-When-Then specifications are the people who create them (the automation engineers, most of the time), without regard for the additional time and effort it requires to implement and maintain this abstraction layer. There’s no discussion, no validation, no Example Mapping, just an automation engineer writing scenarios and implementing them, because readability.

That, though, is not the point of this blog post. What I do want to show here are a couple of techniques you can employ to make your test methods read (almost) like prose, without resorting to adding another abstraction layer like Cucumber.

Our application under test, once again, is ParaBank, the world’s least safe online bank (or rather, a demo web application from Parasoft. In this demo application, you can perform a variety of different scenarios related to online banking, such as opening a new checking or savings account.

With Cucumber, an example scenario that describes part of the behaviour of ParaBank around opening new accounts might look something like this:

Given John is an existing ParaBank customer
And he has an existing checking account with a balance of 5000 dollars
When he opens a new savings account
Then a confirmation message containing the new account number is shown

Not too bad, right? It’s readable, plain English, and (when you know that the initial balance is required for the deposit into the new savings account) describes the intended behaviour in a clear and unambiguous manner.

But here’s the thing: unless this specification has been conjured up before the software was written, by the three amigos, using techniques like Specification by Example and Example Mapping, you don’t need it. It’s perfectly possible to write test code that is nearly just as readable without the additional abstraction layer and dependency that a tool like Cucumber is.

I mean, if the automation engineer is the only person to read the specifications, why even bother creating them? This only presents a maintenance burden that a lot of projects could do without.

As an example, this is what the same test could look like without the Cucumber layer, but with some design decisions that are included for readability (an important aspect of test code, if you’d ask me) and which I’ll describe in more detail below:

private WebDriver driver;

@Before
public void initializeDatabaseAndLogin() {

    ApiHelpers.initializeDatabaseBeforeTest();

    driver = DriverHelpers.createADriverOfType(DriverType.CHROME);

    Credentials johnsCredentials = Credentials.builder().username("john").password("demo").build();

    new LoginPage(driver).
        load().
        loginUsing(johnsCredentials);
}

@Test
public void openAccount_withSufficientFunds_shouldSucceed() {

    Account aNewCheckingAccount =
        Account.builder().type(AccountType.CHECKING).build();

    Account depositingFromAccount =
        Account.builder().id(12345).build();

    new OpenAccountPage(driver).
        load().
        open(aNewCheckingAccount, depositingFromAccount);

    boolean newAccountIdIsDisplayed = new OpenAccountResultPage(driver).newAccountIdIsDisplayed();

    assertThat(newAccountIdIsDisplayed).isTrue();
}

Now, I don’t know about you, but to me, that’s almost as readable as the Cucumber scenario we’ve seen earlier. And remember: if we opted to use Cucumber instead, we would have had to write the same code anyway. So if there’s no upfront communication happening around these scenarios (or in this case, I’d rather just call them tests) anyway, why bother including the Cucumber layer in the first place?

Let’s look at some of the things I’ve implemented to make this code as readable as possible:

Short tests
This is probably the most important one of them all, and that’s why I mention it first. Your tests should be short, sweet and to the point. Ideally, they should check one thing only. Need specific data to be set up prior to the actual test? Try and do that using an API or directly in a database.

In this example, I’m calling a method initializeDatabaseBeforeTest() to reset the database to a known state via an API. There’s plenty of reading material out there on why your tests should be short, so I’m not going to dive into this too deeply here.

Model business concepts as types in your code
If you want to write tests that are human readable, it really helps to model business concepts that mean something to humans as object types in your code. For example, in the test above, we’re creating a new account. An account, in the context of an online banking system, is an entity that has specific properties. In this case, an account has a type, a unique id and a balance:

@Data
@Builder
@AllArgsConstructor
public class Account {

    private AccountType type;
    private int id;
    private double balance;

    public Account(){}
}

I’m using Lombok here to generate getters and setters as well as a builder to allow for fluid object creation in my test method.

It’s important that everybody understands and agrees on the definition of these POJOs (Plain Old Java Objects), such as the Account object here. This massively helps people that are not as familiar with the code as the person who wrote it to understand what’s happening. Not using Cucumber doesn’t absolve you from communicating with your amigos!

Another tip: if a property of a business object can only have specific values, use an enum, like we did here using AccountType:

public enum AccountType {
    CHECKING,
    SAVINGS
}

This prevents objects and properties to accidentally being assigned a wrong value and it increases readability. Winner!

Think hard about the methods exposed by your Page Objects
To further improve test readability, your Page Objects should (only) expose methods that have business meaning. Looking at the example above, the meat of the test happens on the OpenAccount page, where the new account is created. Next to a load() method used to navigate to the page directly (only use these for pages that you can load directly), it has an open() method that takes two arguments, both of type Account, the POJO we’ve seen before. The first one represents the new account, the second represents the account from which the initial deposit into the new account is made.

If you look at the page where you can open an account in the ParaBank application, you’ll see that there’s not much else to do than opening an account, so it makes sense to expose this action to the test methods that use the OpenAccount Page Object.

Choose good names, then choose better ones
You’ve hopefully seen by now that I tried to choose the names I use in my code very carefully, so as to maximize readability. This is hard. I changed the names of my variables and methods many times when I created this example, and I feel that there’s still more room for improvement.

Long variable and method names aren’t inherently bad, as long as they stick to the point. That’s why, for example, I chose to name the method that opens a new account on the OpenAccount page as open() instead of openAccount().

From the context, it’s clear that we’re opening an account here. It’s a method of the OpenAccount page, and its arguments are of type Account. No need to mention it again in the method name, as I did in an earlier iteration. By the way, I learned this from the Clean Code book, which I think is a very valuable read for automation engineers. Lots of good stuff in there.

Use libraries that help you with readability
Apart from Lombok, I also used the AssertJ library to help me write more readable assertions. So, instead of using the default JUnit assertTrue() method, I can now write

assertThat(newAccountIdIsDisplayed).isTrue();

which I think is easier to read. AssertJ has a lot of methods that can help you write more readable assertions, and I think it’s worth checking out for everybody writing Java test code.

So, all in all, I hope that the example above has shown you that it is possible to write (automation) code that is human readable without adding another layer of abstraction in the form of a tool like Cucumber or SpecFlow. This GitHub repository contains the examples I’ve shown here, plus a couple more tests to show some more example of readable (Selenium) test code.

I’m sure there’s still more room for improvement, and I’d love to hear your suggestions on how to further improve the readability of the test code shown here. My main point, though, is to show you that you don’t need Cucumber to make your tests readable to humans.

Let your test automation talk to you

Most of my current projects involve me paving the automation way by discussing requirements and needs with stakeholders, deciding on an approach and the tools used, setting up a solution and some initial tests and then instructing others and handing over the project. I love doing this type of projects, as it allows me (who’s bored quite easily and quickly) to move from project to project and from client to client regularly (sometimes once every couple of weeks). One of the most important factors in facilitating an easy handover of ‘my’ (it isn’t really mine, of course) automation solution to those who are going to continue and expand on it is by making the automation setup as self-explanatory as possible.

This is especially so when those that are going to take over don’t have as much experience with the tools and architecture that has been decided upon (or, in some cases, that I’ve decided to use). Let’s take a look at two ways to make it easy to hand over automation (results) to your successor (stakeholder), or, as I’d like to call it, to have your automation talk to you about what it’s doing and what the results of executing the automated tests are. Not literally talk to you (though that would be nice!), but you know what I mean..

Through the code
One of the most effective ways of making your automation solution easily explainable to others is through the code. Not only should your code be well structured and maintainable, good code requires little to no comments (who’s got time or motivation to write comments anyway?) because it is self-explanatory. Some prime examples of self describing code that I’ve used or seen are:

Having your Page Object methods in Selenium return Page Objects.
When you write your Page Object Methods like this:

public LoginPage SetEmailAddressTo(string emailAddress)
{
    PElements.SendKeys(_driver, textfieldEmailAddress, emailAddress);
    return this;
}

public LoginPage SetPasswordTo(string password)
{
    PElements.SendKeys(_driver, textfieldPassword, password);
    return this;
}

public void ClickLoginButton()
{
    PElements.Click(_driver, buttonLogin);
}

you can write your tests (or your step definition implementations, if you’re using Cucumber or SpecFlow) like this:

[When(@"he logs in using his credentials")]
public void WhenHeLogsInUsingHisCredentials()
{
    new LoginPage().
        SetEmailAddressTo("user@example.com").
        SetPassword("mypassword").
        ClickLoginButton();
}

It’s instantly clear what your tests is doing here, all by means of allowing method chaining through well-chosen method return types and expressive method names.

Choosing to work with libraries that offer fluent APIs
Two prime examples I often use are REST Assured and WireMock. For example, REST Assured allows you to create powerful, yet highly readable tests for RESTful APIs, while abstracting away boilerplate code like this:

@Test
public void verifyCountryForZipCode() {
						
	given().
	when().
		get("http://localhost:9876/us/90210").
	then().
		assertThat().
		body("country", equalTo("United States"));
}

WireMock does something similar, but for creating over-the-wire mocks:

public void setupExampleStub() {

	stubFor(post(urlEqualTo("/pingpong"))
		.withRequestBody(matching("<input>PING</input>"))
		.willReturn(aResponse()
			.withStatus(200)
			.withHeader("Content-Type", "application/xml")
			.withBody("<output>PONG</output>")));
}

One of the main reasons I like to work with both is that it’s so easy to read the code and explain to others what it does, without loss of power and features.

Create fluent assertions
Arguably the most important part of your test code is where the assertions are being made. Of course you need readable arrange (given) and act (when) sections too, but when you’re explaining or demonstrating your code to others, having readable assert (then) sections will be of great help, simply because that’s where the magic happens (so to say). You can make your assertions pretty much self-explanatory by using libraries such as Hamcrest when you’re using Java, or FluentAssertions when you’re working with C#. The latter even allows you to create better readable error messages when an assertion fails:

IEnumerable collection = new[] { 1, 2, 3 };
collection.Should().HaveCount(4, "because we thought we put four items in the collection"));

results in the following error message:

Expected <4> items because we thought we put four items in the collection, but found <3>.

Through the reporting
Now that you’ve got your code all cleaned up and readable, it’s time to shift our attention towards the output of the test execution: your reporting. We’ve seen the first step towards clearly readable and therefore useful reporting above: readable error messages. But good reporting is more than that. First, you need to think of the audience for your report. Who’s going to be informed by your report?

  • Is it a developer? In that case you might want to include details about the test data used, steps to reproduce the erroneous situation and detailed information about the failure (such as stack traces and screenshots) in the report. Pretty much everything that makes it easy for your devs to analyze the failure, so to say. In my experience, more is better here.
  • Is it a manager or a product owner? In that case he or she is probably only interested in the overall outcome (did the tests pass?). Maybe also in test coverage (what is it that we covered with these automated tests?). They’ll probably be less interested in stack traces, though.
  • Is it a build tool, such as Jenkins or Bamboo? In that case the highest priority is that the results are presented in a way that can be interpreted automatically by that tool. A prime example is the xUnit test output format that frameworks such as JUnit and TestNG produce. These can be picked up, parsed and presented by Jenkins, Bamboo and any other CI tool that’s worth its salt without any additional configuration or programming.

Again, think about the audience for your test automation reports, and include the information that’s valuable and useful to them. Nothing less, but nothing more either. This might require you to talk with these stakeholders. This might even require you to create more than a single report for every test run. Doesn’t matter. Have your automation talk to you and to your stakeholders by means of proper reporting.